
1
Future Features

Multi-catch

Sometimes we need to handle more than one
exception in a single catch block:

Note that this is not proposing general union types:

try {
 // some code
} catch (e: ExceptionA|ExceptionB) {
 log(e);
 throw e;
}

2
Future Features

Overloadable
operators | and &

Kotlin has || and && for booleans. These operators can not be overloaded, because of
their short-circuit semantics: right-hand side of ||, for example, won’t be evaluated is
the left-hand side is already true.

be evaluated regardless) could be useful for DSLs as well as for traditional bitwise
operations on integers.

fun test() {
 task1 | task2
}class Task {
 operator fun or(other: Task) = /* pipe output of this into other */
}
fun test() {
 task1 | task2
}

3
Future Features

Short notation

constants

compiler could get smarter and infer the relevant enum’s name from context.

Same for assignments:Example:

fun test(c: Color) = when (c) {
 RED -> { ... }
 GREEN -> { ... }
 BLUE -> { ... }
}

widget.color = RED

4
Future Features

Private members
accessible from
tests

We test a lot more than we expose as an API. Making things internal or package-
private just for the sake of testing them can cause confusion and leaky abstractions:
clients inside the module/package can still call and abuse these methods, so this
technique is a problem for a good API.

class ProductionClass {
 private var privateField = ...
 public fun method() { ... }
}

Production code:

@Test
fun barFoo() {
 val p = ProductionClass()
 p.method()
 assertTrue(“...”, p.
privateField) // Allowed only in
tests!
}

Tests:

5
Future Features

Support
package-private
visibility

In Kotlin packages are namespaces and not visibility scopes.
Modules, on the other hand, are visibility scopes and not
namespaces. So, there’s internal
module), but no package-private

Some users report issues in mixed Kotlin/Java projects where
they want Kotlin to have , just like Java.

Do you want this too?

6
Future Features

Collection
literals

Today, we create collections in Kotlin by calling library functions, such as
listOf(1, 2, 3) mapOf(“foo” to “bar”, “baz” to “roo”). We could
make it more convenient by adding specialized syntax, e.g. [1, 2, 3]
or an array, and something like [“foo” = “bar”, “baz” = “roo”].

All syntax is purely provisional at this point.

Particular types of collections created may be determined by libraries/operator
conventions.Annotations can benefit from this through shortened syntax for

@RequestMapping(path = [“/”]).

7
Future Features

Collection
comprehensions

Some languages support short notation for constructing collections (that
basically combines maps and filters in a very terse syntax). Examples would be list
comprehensions in Python/ Haskel, and LINQ in C#, as well as Scala’s for/yield.

[x.name for x in employees if x.division == Production]

 == Production}.map {it.name}

Kotlin could also have some syntax like

8
Future Features

Slices for lists
and arrays

Slices are popular in numeric
computations, where

data[a:b] means sub-list from a to b-1

data[a:]

data[a:b:c]

9
Future Features

Inline classes/
Value classes

Many of us want to be able store aggregate data by value, not only by reference, but
the VM’s Kotlin runs on at the moment (JVM/Android/JS) do not allow this, at least
until value types are implemented for the JVM (Project Valhalla).

So, instead we can use some compiler magic to support value classes *with only one
(immutable) field*. For example:

This could be used as a normal class, but stored as a Long, with no wrapper object
allocated. Such classes could be useful to represent units of measurement, unsigned
arithmetic and custom strings — when a piece of data (like a hash or a user ID) is
represented by a string, but we don’t want this to be freely mixed with other strings.

inline class MyDate(private val data: Long) {
 val month: Int get() = ...
 val year: Int get() = ...

 fun shiftBy(days: Int) = ...
}

10
Future Features

Format
strings

Formatting directives for string interpolations could be a part of the language syntax
(unlike current String.format(...)). Syntax is only provisional, but you can get the idea:

“${.2d: 123.339}”
String.format(“%.2d”, 123.339)

“${e: x / y}”
String.format(“%e”, x / y)

The exact requirements, operator conventions and syntactic forms are yet to be
designed.

11
Future Features

Optional (trailing)
commas

Many comma-separated lists are hard to re-order because the

Trailing commas

We propose to allow a comma after
last elements in such lists:

Commas before a new line

We propose to allow no comma after any
element of a list if it’s followed by a new line:

data class Foo(val a: Int, val
b: String,)
fun foo<X, Y,>(a: Int, b: String,
) { ... }
val foo = foo<X, Y, >(a, b,)

fun foo(
 a: Int // no comma
 b: String
) { ... }data class Foo(
 val a: Int // no comma
 val b: String
)
fun foo(
 a: Int // no comma
 b: String
) { ... }

12
Future Features

Unsigned
arithmetic

Support types such as UInt, ULong, UByte, UShort
unsigned integers. This way 0xFFFFFFFF
become a legitimate value of type UInt.

Unsigned numbers should support all the common operations (+, -, *,
/, %, >, <, >=, <=, and, or, xor, inv, shl, shr), but treat the
most significant bit as a regular one, not a sign. This means, for example that
an UByte 0xFF 0, not less as with signed Byte

13
Future Features

SAM conversions

interfaces

Interfaces that have a Single Abstract Method (SAM-interfaces) can be naturally
implemented by lambdas. In fact, this is how lambdas work in Java 8: when it’s
assigned to an SAMinterface, it implements it. This is called a SAM conversion.

Kotlin has SAM conversions for Java interfaces.
But if this interface is defined in Kotlin, we can’t assign a lambda directly to it:w

Here we propose to allow assigning lambdas to SAM interfaces:

interface Action<T> {
 fun run(data: T)
}

val action: Action<T> = { data -> log(“data: $data”) }

14
Future Features

Annotations
for static
analyses

Many interesting properties of programs can be verified by a static analyzer (built into
the compiler or provided as a plugin). We could support annotations to denote such
properties and issue errors if they are not satisfied:

@Pure

@MustUseReturnValue
Futures,error codes, etc)

@MustCatch

@RunUnconditionally
as simple code blocks (can allow smart casts, val initialization and other such things)

@SafeInitialization
logic

15
Future Features

Destructuring
assignments

Kotlin already has destructuring declarations:

val

Some users request destructuring assignments,
i.e. assign to multiple previously declared var’s:

var name = ...
...
var address = ...
...

Do you need this feature?

16
Future Features

Use
invokedynamic
to compile Kotlin

When generating Java 8 byte codes, we can compile Kotlin lambdas using
invokedynamic
compilation strategy (anonymous inner classes, used for Java 6 byte code) it means
fewer class files and slightly fewer bytes in the output.

NOTE: It will not reduce method counts for Android .APK’s,

17
Future Features

Static members
for Kotlin
classes

Kotlin doesn’t have static members in classes or interfaces. Instead, it has companion
objects. This concept causes some issues with Java interop and sometimes causes
boilerplate, and we are wondering if these issues are serious enough to eventually
introduce true static members to Kotlin:

What do you think?

class Example {
 fun instanceMember() { ... }

 static fun staticMember() { ... }
}

18
Future Features

Truly
immutable
data

Kotlin has immutable variables (**val**’s), but no language mechanisms that would
guarantee true “deep” immutability of the state. If a val references a mutable object,
it’s contents can be modified:

Read-only interfaces for collections help somewhat, but we’d need something like
readonly/**immutable** modifier for *all types* to ensure true immutability.
Syntax is purely provisional:

val myVal = arrayListOf(1)
myVal.add(2) // mutation

class Foo(var v: Int)

immutable class Bar(val foo: Foo) // error: mutable reference from immutable
class

19
Future Features

Subject variable
in when

When examining a value of a complex expression,
it may be useful to refer to it as a variable.

name for any when’s subject, but we feel that this would

Example

when (val x = some.complex(expression)) {
 A -> log(x)
 B -> blog(x)
 C -> balrog(x)
}

20
Future Features

Vararg-like
treatment
of data classes

We have varargs for passing arrays to functions without explicitly creating them.
We could have the same for data classes:

// Usage:
doSomething(name = ”John Doe”, age = ”25”)data class Person(val name: String,
val age: Int)
fun doSomething(dataarg p: Person) { ...)
// Usage:
doSomething(name = “John Doe”, age = “25”)

